Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6224, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803011

RESUMO

Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Feminino , Humanos , Anticorpos Amplamente Neutralizantes , Macaca , Anticorpos Neutralizantes , Anticorpos Anti-HIV
2.
Cell Host Microbe ; 31(8): 1275-1287.e8, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37433296

RESUMO

HIV-1 broadly neutralizing antibodies (bNAbs) can decrease viremia but are usually unable to counteract autologous viruses escaping the antibody pressure. Nonetheless, bNAbs may contribute to natural HIV-1 control in individuals off antiretroviral therapy (ART). Here, we describe a bNAb B cell lineage elicited in a post-treatment controller (PTC) that exhibits broad seroneutralization and show that a representative antibody from this lineage, EPTC112, targets a quaternary epitope in the glycan-V3 loop supersite of the HIV-1 envelope glycoprotein. The cryo-EM structure of EPTC112 complexed with soluble BG505 SOSIP.664 envelope trimers revealed interactions with N301- and N156-branched N-glycans and the 324GDIR327 V3 loop motif. Although the sole contemporaneous virus circulating in this PTC was resistant to EPTC112, it was potently neutralized by autologous plasma IgG antibodies. Our findings illuminate how cross-neutralizing antibodies can alter the HIV-1 infection course in PTCs and may control viremia off-ART, supporting their role in functional HIV-1 cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Viremia , Infecções por HIV/tratamento farmacológico , Antígenos Virais , Polissacarídeos , Produtos do Gene env do Vírus da Imunodeficiência Humana
3.
Nat Commun ; 13(1): 1944, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410989

RESUMO

HIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present "silent" humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Infecções por HIV/tratamento farmacológico , Humanos , Imunidade Humoral , Viremia
4.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35230385

RESUMO

Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.


Assuntos
Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Controladores de Elite , Epitopos , Anticorpos Anti-HIV , Humanos , Imunoglobulina A , Imunoglobulina G , Camundongos , Polissacarídeos , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
Nat Commun ; 13(1): 630, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110562

RESUMO

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) are promising molecules for therapeutic or prophylactic interventions. Beyond neutralization, bNAbs exert Fc-dependent functions including antibody-dependent cellular cytotoxicity and activation of the complement. Here, we show that a subset of bNAbs targeting the CD4 binding site and the V1/V2 or V3 loops inhibit viral release from infected cells. We combined immunofluorescence, scanning electron microscopy, transmission electron microscopy and immunogold staining to reveal that some bNAbs form large aggregates of virions at the surface of infected cells. This activity correlates with the capacity of bNAbs to bind to Env at the cell surface and to neutralize cell-free viral particles. We further show that antibody bivalency is required for viral retention, and that aggregated virions are neutralized. We have thus identified an additional antiviral activity of bNAbs, which block HIV-1 release by tethering viral particles at the surface of infected cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vírion/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Amplamente Neutralizantes , Linhagem Celular , Epitopos , Infecções por HIV/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Linfócitos T , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
6.
PLoS Pathog ; 17(4): e1009526, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872329

RESUMO

HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.


Assuntos
Antivirais/metabolismo , Quimiocina CXCL12/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Receptores CXCR4/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/fisiopatologia , Infecções por HIV/transmissão , HIV-1/fisiologia , Homeostase , Humanos , Proteínas do Envelope Viral/metabolismo , Virulência
7.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082263

RESUMO

HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.IMPORTANCE HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Linhagem Celular , Células Endoteliais/virologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Transcitose , Vírion/imunologia
8.
EBioMedicine ; 57: 102842, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32619962

RESUMO

BACKGROUND: HIV-1 sexual transmission occurs mostly through infected semen, which contains both free virions and infected leukocytes. Transmission initiated by infected cells has been shown by several in vitro and in vivo studies and a reduced capacity of broadly neutralizing antibodies (bNAbs) to inhibit cell-to-cell transmission has also been reported. However, due to limitations of available experimental models, there is yet no clarity to which extend bNAbs can prevent transmission mediated by semen leukocytes. METHODS: We developed a novel in vitro assay to measure cell-cell transmission that makes use of splenocytes or CD45+ semen leukocytes collected from acutely SHIV162P3-infected cynomolgus macaques. A panel of 11 bNAbs was used either alone or in combination to assess their inhibitory potential against both cell-free and cell-cell infection. FINDINGS: Splenocytes and semen leucocytes displayed a similar proportion of CD4+T-cell subsets. Either cell type transferred infection in vitro to target TZM-bl cells and PBMCs. Moreover, infection of macaques was achieved following intravaginal challenge with splenocytes. The anti-N-glycans/V3 loop bNAb 10-1074 was highly efficient against cell-associated transmission mediated by infected spleen cells and its potency was maintained when transmission was mediated by CD45+ semen leukocytes. INTERPRETATION: These results support the use of bNAbs in preventative or therapeutic studies aiming to block transmission events mediated not only by free viral particles but also by infected cells. Our experimental system could be used to predict in vivo efficacy of bNAbs. FUNDING: This work was funded by the ANRS and the European Commission.


Assuntos
Anticorpos Amplamente Neutralizantes/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Sêmen/virologia , Animais , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Macaca fascicularis/virologia , Sêmen/efeitos dos fármacos
9.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32579155

RESUMO

Rare individuals can naturally clear chronic hepatitis B virus (HBV) infection and acquire protection from reinfection as conferred by vaccination. To examine the protective humoral response against HBV, we cloned and characterized human antibodies specific to the viral surface glycoproteins (HBsAg) from memory B cells of HBV vaccinees and controllers. We found that human HBV antibodies are encoded by a diverse set of immunoglobulin genes and recognize various conformational HBsAg epitopes. Strikingly, HBsAg-specific memory B cells from natural controllers mainly produced neutralizing antibodies able to cross-react with several viral genotypes. Furthermore, monotherapy with the potent broadly neutralizing antibody Bc1.187 suppressed viremia in vivo in HBV mouse models and led to post-therapy control of the infection in a fraction of animals. Thus, human neutralizing HBsAg antibodies appear to play a key role in the spontaneous control of HBV and represent promising immunotherapeutic tools for achieving HBV functional cure in chronically infected humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Hepatite B/imunologia , Animais , Linfócitos B/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Citometria de Fluxo , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Hepatite B Crônica/imunologia , Humanos , Memória Imunológica/imunologia , Camundongos , Testes de Neutralização
10.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852789

RESUMO

The HIV-1 Env protein is exposed at the surface of virions and infected cells. Env fluctuates between different closed and open structural states and these conformations influence both viral infectivity and sensitivity to antibody binding and neutralization. We established a flow virometry assay to visualize Env proteins at the surface of human immunodeficiency virus type 1 (HIV-1) virions. The assay is performed on ultracentrifuged fluorescent viral particles that are stained with a panel of broadly neutralizing antibodies (bNAbs) and nonneutralizing antibodies (nnAbs) that probe different epitopes of Env. We used this assay to compare Env at the surface of producer cells and viral particles and to analyze the effect of Nef, CD4, and SERINC5 on Env accessibility to antibodies. We studied the laboratory-adapted strain NL4-3 and two transmitted/founder viruses, THRO and CH058. We confirm that antibody accessibility varies between viral strains and show that Nef, CD4, and SERINC5 additively impact Env conformations. We further demonstrate that the Env accessibility profile on virions is globally similar to that observed on HIV-1-infected cells, with some noticeable differences. For instance, nnAbs bind to virions more efficiently than to producer cells, likely reflecting changes in Env conformational states on mature viral particles. This test complements other techniques and provides a convenient and simple tool for quantifying and probing the structure of Env at the virion surface and to analyze the impact of viral and cellular proteins on these parameters.IMPORTANCE HIV-1 Env conformation is one of the key parameters determining viral infectivity. The flow virometry-based assay developed in this study allows for the characterization of proteins incorporated in HIV-1 particles. We studied the conformation of HIV-1 Env and the impact that the viral protein Nef and the cellular proteins CD4 and SERINC5 have on Env accessibility to antibodies. Our assay permitted us to highlight some noticeable differences in the conformation of Env between producer cells and viral particles. It contributes to a better understanding of the actual composition of HIV-1 particles.


Assuntos
Antígenos CD4/metabolismo , Citometria de Fluxo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas de Membrana/metabolismo , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/genética , Linhagem Celular , Epitopos/genética , Epitopos/metabolismo , Anticorpos Anti-HIV/química , Infecções por HIV/genética , HIV-1/genética , Humanos , Proteínas de Membrana/genética , Conformação Proteica , Vírion/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
11.
EMBO Rep ; 21(2): e49351, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31833228

RESUMO

The effect of anti-HIV-1 antibodies on complement activation at the surface of infected cells remains partly understood. Here, we show that a subset of anti-Envelope (Env) broadly neutralizing antibodies (bNAbs), targeting the CD4 binding site and the V3 loop, triggers C3 deposition and complement-dependent cytotoxicity (CDC) on Raji cells engineered to express high surface levels of HIV-1 Env. Primary CD4 T cells infected with laboratory-adapted or primary HIV-1 strains and treated with bNAbs are susceptible to C3 deposition but not to rapid CDC. The cellular protein CD59 and viral proteins Vpu and Nef protect infected cells from CDC mediated by bNAbs or by polyclonal IgGs from HIV-positive individuals. However, complement deposition accelerates the disappearance of infected cells within a few days of culture. Altogether, our results uncover the contribution of complement to the antiviral activity of anti-HIV-1 bNAbs.


Assuntos
Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV , Infecções por HIV/imunologia , HIV-1 , Humanos
12.
J Hepatol ; 71(5): 908-919, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31279905

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection contributes to the development of autoimmune disorders such as cryoglobulinaemia vasculitis (CV). However, it remains unclear why only some individuals with HCV develop HCV-associated CV (HCV-CV). HCV-CV is characterized by the expansion of anergic CD19+CD27+CD21low/- atypical memory B cells (AtMs). Herein, we report the mechanisms by which AtMs participate in HCV-associated autoimmunity. METHODS: The phenotype and function of peripheral AtMs were studied by multicolour flow cytometry and co-culture assays with effector T cells and regulatory T cells in 20 patients with HCV-CV, 10 chronicallyHCV-infected patients without CV and 8 healthy donors. We performed gene expression profile analysis of AtMs stimulated or not by TLR9. Immunoglobulin gene repertoire and antibody reactivity profiles of AtM-expressing IgM antibodies were analysed following single B cell FACS sorting and expression-cloning of monoclonal antibodies. RESULTS: The Tbet+CD11c+CD27+CD21- AtM population is expanded in patients with HCV-CV compared to HCV controls without CV. TLR9 activation of AtMs induces a specific transcriptional signature centred on TNFα overexpression, and an enhanced secretion of TNFα and rheumatoid factor-type IgMs in patients with HCV-CV. AtMs stimulated through TLR9 promote type 1 effector T cell activation and reduce the proliferation of CD4+CD25hiCD127-/lowFoxP3+ regulatory T cells. AtM expansions display intraclonal diversity with immunoglobulin features of antigen-driven maturation. AtM-derived IgM monoclonal antibodies do not react against ubiquitous autoantigens or HCV antigens including NS3 and E2 proteins. Rather, AtM-derived antibodies possess rheumatoid factor activity and target unique epitopes on the human IgG-Fc region. CONCLUSION: Our data strongly suggest a central role for TLR9 activation of AtMs in driving HCV-CV autoimmunity through rheumatoid factor production and type 1 T cell responses. LAY SUMMARY: B cells are best known for their capacity to produce antibodies, which often play a deleterious role in the development of autoimmune diseases. During chronic hepatitis C, self-reactive B cells proliferate and can be responsible for autoimmune symptoms (arthritis, purpura, neuropathy, renal disease) and/or lymphoma. Direct-acting antiviral therapy clears the hepatitis C virus and eliminates deleterious B cells.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Memória Imunológica , Fator Reumatoide/imunologia , Células Th1/imunologia , Receptor Toll-Like 9/metabolismo , Autoimunidade , Células Cultivadas , Crioglobulinemia/etiologia , Crioglobulinemia/imunologia , Feminino , Hepatite C Crônica/complicações , Hepatite C Crônica/virologia , Humanos , Imunoglobulina M/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Receptores de Complemento 3d/metabolismo , Transdução de Sinais/imunologia , Transcriptoma , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Cell Rep ; 27(2): 572-585.e7, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970259

RESUMO

Mucosal immune responses to HIV-1 involve the recognition of the viral envelope glycoprotein (gp)160 by tissue-resident B cells and subsequent secretion of antibodies. To characterize the B cells "sensing" HIV-1 in the gut of infected individuals, we probed monoclonal antibodies produced from single intestinal B cells binding to recombinant gp140 trimers. A large fraction of mucosal B cell antibodies were polyreactive and showed only low affinity to HIV-1 envelope glycoproteins, particularly the gp41 moiety. A few high-affinity gp140 antibodies were isolated but lacked neutralizing, potent ADCC, and transcytosis-blocking capacities. Instead, they displayed cross-reactivity with defined self-antigens. Specifically, intestinal HIV-1 gp41 antibodies targeting the heptad repeat 2 region (HR2) cluster II cross-reacted with the p38α mitogen-activated protein kinase 14 (MAPK14). Hence, physiologic polyreactivity of intestinal B cells and molecular mimicry-based self-reactivity of HIV-1 antibodies are two independent phenomena, possibly diverting and/or impairing mucosal humoral immunity to HIV-1.


Assuntos
Linfócitos B/imunologia , Reações Cruzadas/imunologia , HIV-1/imunologia , Intestinos/fisiopatologia , Humanos
14.
Cell Rep ; 23(9): 2568-2581, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847789

RESUMO

Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Autoantígenos/imunologia , Sítios de Ligação de Anticorpos , Reações Cruzadas/imunologia , Antígenos HIV/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/imunologia , Testes de Neutralização , Conformação Proteica , Termodinâmica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
15.
J Immunol ; 200(10): 3519-3529, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632141

RESUMO

HIV-1 infection is associated with B cell dysregulation and dysfunction. In HIV-1-infected patients, we previously reported preservation of intestinal lymphoid structures and dendritic cell maturation pathways after early combination antiretroviral therapy (e-ART), started during the acute phase of the infection, compared with late combination antiretroviral therapy started during the chronic phase. In this study, we investigated whether the timing of combination antiretroviral therapy initiation was associated with the development of the HIV-1-specific humoral response in the gut. The results showed that e-ART was associated with higher frequencies of functional resting memory B cells in the gut. These frequencies correlated strongly with those of follicular Th cells in the gut. Importantly, frequencies of HIV-1 Env gp140-reactive B cells were higher in patients given e-ART, in whom gp140-reactive IgG production by mucosal B cells increased after stimulation. Moreover, IL-21 release by PBMCs stimulated with HIV-1 peptide pools was greater with e-ART than with late combination antiretroviral therapy. Thus, early treatment initiation helps to maintain HIV-1-reactive memory B cells in the gut as well as follicular Th cells, whose role is crucial in the development of potent affinity-matured and broadly neutralizing Abs.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos B/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Adulto , Idoso , Linfócitos B/virologia , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Interleucinas/metabolismo , Mucosa Intestinal/virologia , Intestinos/virologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
16.
Immunity ; 46(2): 301-314, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228284

RESUMO

Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in infants and is characterized by pulmonary infiltration of B cells in fatal cases. We analyzed the B cell compartment in human newborns and identified a population of neonatal regulatory B lymphocytes (nBreg cells) that produced interleukin 10 (IL-10) in response to RSV infection. The polyreactive B cell receptor of nBreg cells interacted with RSV protein F and induced upregulation of chemokine receptor CX3CR1. CX3CR1 interacted with RSV glycoprotein G, leading to nBreg cell infection and IL-10 production that dampened T helper 1 (Th1) cytokine production. In the respiratory tract of neonates with severe RSV-induced acute bronchiolitis, RSV-infected nBreg cell frequencies correlated with increased viral load and decreased blood memory Th1 cell frequencies. Thus, the frequency of nBreg cells is predictive of the severity of acute bronchiolitis disease and nBreg cell activity may constitute an early-life host response that favors microbial pathogenesis.


Assuntos
Linfócitos B Reguladores/imunologia , Bronquiolite Viral/imunologia , Receptores de Quimiocinas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Linfócitos B Reguladores/virologia , Bronquiolite Viral/patologia , Linfócitos T CD4-Positivos/imunologia , Receptor 1 de Quimiocina CX3C , Ensaio de Imunoadsorção Enzimática , ELISPOT , Perfilação da Expressão Gênica , Humanos , Recém-Nascido , Ativação Linfocitária/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios , Transcriptoma
17.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122982

RESUMO

Anti-human immunodeficiency virus type 1 (HIV-1) nonneutralizing antibodies (nnAbs) capable of antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. Broadly neutralizing antibodies (bNAbs) also mediate ADCC in cell culture and rely on their Fc region for optimal efficacy in animal models. Here, we selected 9 monoclonal nnAbs and 5 potent bNAbs targeting various epitopes and conformations of the gp120/41 complex and analyzed the potency of the two types of antibodies to bind and eliminate HIV-1-infected cells in culture. Regardless of their neutralizing activity, most of the selected antibodies recognized and killed cells infected with two laboratory-adapted HIV-1 strains. Some nnAbs also bound bystander cells that may have captured viral proteins. However, in contrast to the bNAbs, the nnAbs bound poorly to reactivated infected cells from 8 HIV-positive individuals and did not mediate effective ADCC against these cells. The nnAbs also inefficiently recognize cells infected with 8 different transmitted-founder (T/F) isolates. The addition of a synthetic CD4 mimetic enhanced the binding and killing efficacy of some of the nnAbs in an epitope-dependent manner without reaching the levels achieved by the most potent bNAbs. Overall, our data reveal important qualitative and quantitative differences between nnAbs and bNAbs in their ADCC capacity and strongly suggest that the breadth of recognition of HIV-1 by nnAbs is narrow.IMPORTANCE Most of the anti-HIV antibodies generated by infected individuals do not display potent neutralizing activities. These nonneutralizing antibodies (nnAbs) with antibody-dependent cellular cytotoxicity (ADCC) have been identified as a protective immune correlate in the RV144 vaccine efficacy trial. However, in primate models, the nnAbs do not protect against simian-human immunodeficiency virus (SHIV) acquisition. Thus, the role of nnAbs with ADCC activity in protection from infection remains debatable. In contrast, broadly neutralizing antibodies (bNAbs) neutralize a large array of viral strains and mediate ADCC in cell culture. We analyzed the capacities of 9 nnAbs and 5 bNAbs to eliminate infected cells. We selected 18 HIV-1 strains, including virus reactivated from the reservoir of HIV-positive individuals and transmitted-founder isolates. We report that the nnAbs bind poorly to cells infected with primary HIV-1 strains and do not mediate potent ADCC. Overall, our data show that the breadth of recognition of HIV-1 by nnAbs is narrow.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Anticorpos Monoclonais/imunologia , Células Cultivadas , Humanos
18.
Eur J Immunol ; 46(10): 2340-2351, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27469325

RESUMO

Class-switched memory B cells are key components of the "reactive" humoral immunity, which ensures a fast and massive secretion of high-affinity antigen-specific antibodies upon antigenic challenge. In humans, IgA class-switched (IgA+ ) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B-cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa-tropic viruses and commensal bacteria. However, the IgA+ memory B-cell compartment contains fewer polyreactive clones and importantly, only rare self-reactive clones compared to IgG+ memory B cells. Self-reactivity of IgAs is acquired following B-cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B-cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B-cell populations.


Assuntos
Diversidade de Anticorpos , Autoanticorpos/metabolismo , Linfócitos B/fisiologia , Imunoglobulina A/metabolismo , Memória Imunológica , Afinidade de Anticorpos , Formação de Anticorpos , Autoantígenos/metabolismo , Autoimunidade , Seleção Clonal Mediada por Antígeno , Células Clonais , Humanos , Switching de Imunoglobulina , Imunoglobulina G/metabolismo , Análise de Célula Única
19.
Nat Commun ; 7: 10844, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936020

RESUMO

The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir.


Assuntos
Anticorpos Neutralizantes/fisiologia , Anticorpos Antivirais/fisiologia , Linfócitos T CD4-Positivos/fisiologia , HIV-1/fisiologia , Animais , Linhagem Celular , Humanos
20.
Virology ; 486: 134-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433051

RESUMO

Highly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics. These viruses evolve regularly by substitutions in antigenic sites of the hemagglutinin (HA), which prevent neutralization by antibodies directed against previous strains (antigenic drift). For seasonal H3N2 viruses, an addition of N-glycosylation sites (glycosites) on H3 contributed to this drift. Here, we questioned whether additional glycosites on H5 could induce an escape of H5N1 virus from neutralization, as it was observed for seasonal H3N2 viruses. Seven H5N1 mutants were produced by adding glycosites on H5. The most glycosylated virus escaped from neutralizing antibodies, in vitro and in vivo. Furthermore, a single additional glycosite was responsible for this escape.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Mapeamento de Epitopos , Feminino , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/metabolismo , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...